Effective Teaching Practices
1. Establish mathematics goals to focus learning.
2. Implement tasks that promote reasoning and problem solving
3. Use and connect mathematical representations.
4. Facilitate meaningful mathematical discourse.
5. Pose purposeful questions.
6. Build procedural fluency from conceptual understanding.
7. Support productive struggle in learning mathematics.
8. Elicit and use evidence of student thinking.

-NCTM Mathematical Practices posted

Ongoing fluency expectations:
2.OA.B.2 Fluently add and subtract within 30 using mental strategies. (By the end of 2nd grade, know from memory all sums of two one-digit numbers and related subtraction facts.)
2.NBT.B.5 Fluently add and subtract within 100 using strategies.

Literacy Skills for Mathematical Proficiency:
1. Use multiple reading strategies.
2. Understand and use correct mathematical vocabulary.
3. Discuss and articulate mathematical ideas.
4. Write mathematical arguments.

Domain → Cluster → TN Standard

2.OA.C.3 Determine whether a group of objects (up to 20) has an odd or even number of members by pairing objects or counting them by 2s. Write an equation to express an even number as a sum of two equal addends.

Student Friendly “I Can” Statements
I can identify a group of objects as having an even or odd number of items using different strategies.
I can write an equation to demonstrate that the sum of two identical numbers is even. (e.g. 5+5=10, 6+6=12).
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>I can</th>
</tr>
</thead>
</table>
| 2.NBT.A.3 | Read and write numbers to 1000 using standard form, word form, and expanded form. | I can recognize that the digits in a 4-digit number represent ones, tens, hundreds, and thousands.
I can read and write numbers to 1000 in standard form, word form, and expanded form.
I can model and draw 3-digit numbers using quick pictures, place-value models, and place-value (HTO) charts. |
| 2.NBT.A.2 | Count within 1000. Skip-count within 1000 by 5s, 10s, and 100s, starting from any number in its skip counting sequence. | I can count to 1000 from any given number. Ex: 799, 800, 801, etc.
I can skip count to 1000 by 5’s, 10’s and 100’s starting with any number in its skip counting sequence. |
| 2.WCE.M.1 | Identify skip counting as finding multiples. | I can define skip counting as finding multiples. |
| 2.NBT.A.1 | Know that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 can be represented in multiple ways as 7 hundreds, 0 tens, and 6 ones; 706 ones; or 70 tens and 6 ones).
This standard was formerly divided into parts a and b. Part a. (100 can be thought of as a bundle of ten tens – called a “hundred.” was removed. | I can represent each digit in a 3 digit number using hundreds, tens, and ones.
I can relate the value of each digit in a three-digit number to the place it holds in the number. (place value)
I can represent a hundred as 10 groups of 10.
I can interpret the value of the zeroes in a given hundred as zero tens and zero ones.
I understand the 7 in 706 represents 7 hundreds, and 706 can be decomposed and represented as 70 tens |
| 2.NBT.B.8 | Mentally add 10 or 100 to a given number 100–900, and mentally subtract 10 or 100 from a given number 100–900. | I can apply what I know about place value to:
- mentally add 10 to any number from 100-900.
- mentally add 100 to any number from 100-900.
- mentally subtract 10 from any number from 100-900.
- mentally subtract 100 from any number from 100-900. |
2.NBT.A.4 Compare two three-digit numbers based on the meanings of the digits in each place and use the symbols >, =, and < to show the relationship. | I can determine whether a three-digit number is greater than, less than, or equal to another three-digit number, and record comparisons using the symbols >, <, and = to show the relationship.
I can plot and compare whole numbers up to 1,000 on an open number line. |

*2.OA.B.2 Fluently add and subtract within 30 using mental strategies. By the end of 2nd grade, know from memory all sums of two one-digit numbers and related subtraction facts. (Q1 - 4) | I can recall from memory all the sums of two one-digit numbers. ex: 4+9, 9+8, 5+7, etc. (Q1)
I can recall from memory all of the differences within 20. (Q2)
I can use mental math strategies (e.g., count on, make a ten, decompose numbers into smaller parts) to add or subtract numbers within 20 with ease.
I can add within 30 using mental strategies. (Q3)
I can subtract within 30 using mental strategies. (Q4) |

2.OA.A.1 Add and subtract within 100 to solve one- and two-step contextual problems, with unknowns in all positions, involving situations of add to, take from, put together/take apart, and compare. Use objects, drawings, and equations with a symbol for the unknown number to represent the problem. (Q1, Q2) | I can determine whether a word problem requires addition and/or subtraction to solve.
I can represent addition and subtraction word problems using objects, drawings, and equations with unknowns in all positions.
I can solve addition and subtraction word problems that involve two steps (doing one computation, and using that answer to perform a second computation that leads to the solution of the problem.)
I can write equations to represent a word problem using unknown numbers in different positions, ex: 5 + __ = 13, __ + 8 = 13, 5 + 8 = __. |

2.OA.C.4 Use repeated addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends. | I can create and describe a rectangular array in terms of rows and columns.
I can represent multiplication using models (a rectangular array) to show sets of equal groups. (Ex: 5 X 2 is 5 groups of 2).
I can represent multiplication as repeated addition. |

2.WCE.M.2 Count backwards by ones starting at any number from 100. | I can count backwards by ones starting at any number from 100. |