Effective Teaching Practices
1. Establish mathematics goals to focus learning.
2. Implement tasks that promote reasoning and problem solving
3. Use and connect mathematical representations.
4. Facilitate meaningful mathematical discourse.
5. Pose purposeful questions.
6. Build procedural fluency from conceptual understanding.
7. Support productive struggle in learning mathematics.
8. Elicit and use evidence of student thinking.

- NCTM Mathematical Practices posted

Ongoing fluency expectation:
K.OA.A.5 Add/subtract within 10 (within 5 Q2; within 10 Q3, Q4)

Literacy Skills for Mathematical Proficiency:
1. Use multiple reading strategies.
2. Understand and use correct mathematical vocabulary.
3. Discuss and articulate mathematical ideas.
4. Write mathematical arguments.

After 7 days staggered Kindergarten, introduce text with volume 1, “Fall Festival” pages 1-8, and vocabulary.
Routines and procedures may include calendar, instructional tasks, center rotations, journal writing, student logins with optional pretests, etc.

<table>
<thead>
<tr>
<th>Domain → Cluster → TN Standard</th>
<th>Student Friendly “I Can” Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.WCE.M.1 Demonstrate the use of a calendar as a way of measuring units of time and understanding numerical patterns. (Q1, Q2, Q3, Q4)</td>
<td>I can use a calendar to tell the day and date. (Q1 -2)</td>
</tr>
</tbody>
</table>

Science Integration: GLE 0007.4.1 Plants and animals grow (over time).
GLE 0007.11.1 Objects move and their movement can be measured (by ruler and stopwatch). Q4

I can identify patterns in a calendar and understand the calendar is set up in columns and rows. (Q2)
I can use a calendar to identify yesterday, today, and tomorrow based on a given day of the week. (Q3-4)
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.WCE.M.2</td>
<td>Name, copy, create, and extend patterns, and explain a simple rule for a pattern. (Q1, Q2)</td>
</tr>
</tbody>
</table>
| K.CC.B.4 | Understand the relationship between numbers and quantities; connect counting to cardinality. (Q1, Q2)
 a. When counting objects, say the number names in the standard order, using one-to-one correspondence.
 b. Recognize that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.
 c. Recognize that each successive number name refers to a quantity that is one greater. |
| K.OA.A.3 | Decompose numbers less than or equal to 10 into addend pairs in more than one way (e.g., $5 = 2 + 3$ and $5 = 4 + 1$) by using objects or drawings. Record each decomposition using a drawing or writing an equation. (Q1-2) |
| K.CC.A.3 | Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20. (Q1,Q2,Q3) |

I can tell that yesterday comes before today and tomorrow comes after today. (Q3-4)

I can tell that a calendar is used to measure time in days, weeks or months. Days make up weeks, weeks make up months, and months make up years. (Q4)

I can copy a given pattern. (Q1-2)
I can extend a given pattern. (Q1-2)
I can create a given pattern. (Q2)

I can count objects in a group correctly.
I can tell “how many” are in a group after counting all the objects.
I can explain my counting strategy.
I can recognize that when I count objects the last number I say is the total number of objects.
I can demonstrate that the number of objects does not change when the objects are moved or rearranged.
I can explain my counting strategy.
I can tell how many are in a group when one more object is added, without recounting.
I can interpret my counting strategy.

I can write numbers from 0 to 5. (Q1)
I can write the numeral that matches a given set (number of objects) from 0-5. (Q1)
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.WCE.M.3</td>
<td>Recognize number words from 0-10. (Q1, Q2, Q3, Q4)</td>
<td>I can recognize number words 0-5. (Q1-2) I can recognize number words 6-10 (Q3-4)</td>
</tr>
<tr>
<td>K.WCE.M.4</td>
<td>Understand that each previous number name refers to a quantity that is one less. (Q1, Q2, Q3)</td>
<td>I can tell how many are in a group when an object is taken away (one less) without recounting. (Q1-3)</td>
</tr>
<tr>
<td>K.CC.B.5</td>
<td>Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, a circle, or as many as 10 things in a scattered configuration. Given a number from 1-20, count out that many objects. (Q1, Q2, Q3)</td>
<td>I can count and record up to 5 objects arranged in different ways.(Q1) I can count out 5 objects when given a group of objects. (Q1) I can count and record up to 10 objects arranged in different ways. (Q2) I can count out 10 objects when given a group of objects. (Q2) I can count and record up to 20 objects arranged in different ways. (Q3) I can count out 20 objects when given a group of objects. (Q3)</td>
</tr>
<tr>
<td>K.CC.C.6</td>
<td>Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group. (Q1, Q2, Q3)</td>
<td>I can compare the number of objects in two groups and tell whether they are greater than, less than, or equal to each other. (Q1-3)</td>
</tr>
<tr>
<td>K.WCE.M.5</td>
<td>Recognize sets up to seven objects in patterned arrangements and tell how many without counting (subitizing). (Q1, Q2)</td>
<td>I can recognize a set up to 5 objects in patterned arrangements without counting. (dot cards, dice, etc). (Q1) I can recognize a set up to 7 objects in patterned arrangements without counting. (dot cards, dice, etc). (Q2)</td>
</tr>
</tbody>
</table>